## BIOLOGICAL BULLETIN

MODIFICATION OF RESPONSE IN AMEB.

S. O. MAST AND L. C. JU'SCH.


Cibls and Dellinger ("ox) and Schacffer ('if) maintain that Amothat has the power of seleating food. The former hold that the kind of food preferred changes under various conditions, and they suggest that changes in the kind of food selected is the result of a procen of learning haced upon the method of "trial and eroror." One of 11 (Mant 'sor in preceding observation- found that when the tip of a peatoped of an ambeba comes in contact with al highly illuminted region in the fied it stops: then others are sellt wht ins sucesoion in the same general direction, eately one stopping when it come in contant with the light, until suddenly One is ant out in a markedly different direction, asiding the illominateal region alogether. It in mantaned that this abrupt change in the direction of the formation of the perdopeds. eonstituting a profousd madification in the response io a given :timulas, is dependent upon the preceding experience of the individual, i.e. repeated contate with the stong light.

The specimens laved in the following experiment- were obtained from the culture in the haboratory, mont of which had been stocked with material from a stram near the camplis. They Were of the proteds lype. Each ambeha was isolated on a glas slide in a drop) of its colture-flaid under a cover-glase, the edges of which were sealed with vascline. Each amodot was adapted to darkness before using.

The observations were made iar the dark room. An area of intense light wats obtained by focusing on the slide under the microscope, by means of the rellector and an Abbe condenecr. an image of a portion of the luminous lilament of an incandeseent Mazda lamp placed in a light-tight box. The raty of the filament passed through a very narrow slit in the box. The image had
clearly defined edges and furnished a band of intense light across the field. The slide was adjusted so that the amœba was within a distance equal to approximately half its length from the light with the pseudopod or pseudopods progressing towards it. If the pseudopod did not stop when it came in contact with the light the amoba was discarded. If it stopped the behavior of the amoba was observed until it definitely moved away from the light, and the number of pseudopods which made contact with it was recorded. After this the light was shut off, and the amoba was left in darkness until the next trial was made. In this way each individual was given twenty-seven trials.

The interval between trials was approximately three minutes except in the following as recorded in Table I : individual $B$, trials $16-17$ and $23-24$, 24 hours; individual $D$, trials 15-16, 22 hours; individual $E$, trials $8-9$ I 8 hours, $16-17,48$ hours, and 2I-22, 2+ hours; individual $F$, trials $8-9$, 50 hours, and 20-2I, 20 hours; individual $G$, trials $16-17$, 16 hours, and $24-25,3$ hours. During these intervals the ammere were kept on their slides in darkness undisturbed.

The behavior of a typical individual is illustrated in Fig. I by sketches representing all of the trials in the series. By referring to this figure it will be seen that while during the first part of the series there was something of a persistence on the part of the amœeba to attempt to proceed in its original direction-notably 7 attempts in trial 4 -there was but little in the latter part of the series-a total of only 5 attempts during the last if trials.

The results obtained in all of the tests are presented in Table I. This table shows that the number of pseudopods which came in contact with the light before the direction was changed decreased in general as the number of trials increased in each series, that there was a similar decrease in the total contacts of all amœber for corresponding trials, and also in the totals of consecutive groups of three trials. Amocha $B$ made 10 contacts with the light in the first three trials; with trial + a general decrease begins. A total of 20 pseudopods made contact in the first iftrials of the series, and a total of 9 in the last 13 . In the series of amocba $D$ there were 5 contacts in the first 6 trials but none at all in the remaining 2 I trials. Amoba $E$ made $2 I$ contacts in the first $1+$ trials-II of these were in the first + -and 5 in the last 13







Non
-



(in)




Fig. I. A series of diagrammatic sketches illustrating the behavior of Amoeba $I$ if ir twenty-seven trials. The straight lines of equal length represent a band of light. The outlines of the ameba describe its position in relation to the light at the time given below in each individual sketch. The arrows show the direction of protoplasmic streaming.
trials. Amœba $F$ made no contacts until trial $S$; between trials 8 and 15 there were 8 contacts, while in the remaining 12 trials there was but one contact. There was one contact in the first trial of Amoba $G$, then none until the 7 th, when a reversal began and persisted very generally through the 17 th, by which time 23 contacts had been made; in the remaining ten trials there were 8 contacts.

Table I.
Response of Aneba to Contact with a Highly Illuminated Region in the Field.

| Designation of Trials. | Number of Pseudopoda that Came in Contact with Light in Each Trial. |  |  |  |  | Total Contacts for All Individuals in Each Trial. | Total Contacts for All Individuals in Groups of Three Consecutive Trials. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $B$. | $D$. | $E$. | $F$. | $G$. |  |  |
| 1 | 4 | 0 | 0 | 0 | I | 5 |  |
| 2 | 3 | 0 | 3 | 0 | 0 | 6 |  |
| 3 | 3 | 3 | I | 0 | 0 | 7 | 18 |
| 4 | 0 | 0 | 7 | 0 | 0 | 7 |  |
| 5 | 3 | 1 | - | 0 | o | 4 |  |
| . 6 | $\bigcirc$ | 1 | 0 | 0 | 0 | 1 | 13 |
| 7 | 1 | o | 2 | 0 | I | 4 |  |
| 8 | 2 | 0 | - | 2 | 4 | 8 |  |
| 9 | 0 | 0 | 2 | 1 | 2 | 5 | 17 |
| 10 | 0 | 0 | 4 | 0 | 1 | 5 |  |
| 11 | 3 | 0 | 2 | 2 | 2 | 9 |  |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 14 |
| 13 | 0 | 0 | 0 | I | 2 | 3 |  |
| 14 | I. | 0 | 0 | 0 | 4 | 5 |  |
| 15 | 0 | 0 | I | 2 | I | 4 | 12 |
| 16 | 1 | 0 | 1 | - | 1 | 3 |  |
| 17 | 0 | 0 | 0 | - | 5 | 5 |  |
| 18 | 0 | 0 | 0 | 0 | 0 | o | S |
| 19 | 0 | - | 1 | 0 | 0 | 1 |  |
| 20 | 0 | 0 | 0 | 0 | 1 | 1 |  |
| 21 | 2 | 0 | 2 | 0 | 0 | 4 | 6 |
| 22 | 0 | 0 | 0 | 1 | - | 1 | - |
| 23 | I | 0 | - | 0 | 3 | 4 |  |
| 2.4 | 0 | 0 | - | 0 | 3 | 3 | 8 |
| 25 | 4 | 0 | o | 0 | 1 | 5 |  |
| 25 | I | $\bigcirc$ | 0 | o | 0 | I |  |
| 27 | - | 0 | 0 | 0 | 0 | 0 | 6 |

The totals by groups of three consecutive trials fluctuate between 18 for the first group, 12 for the middle and 6 for the last. In other worls there is a modification of response in the sense that the number of attempts to continue in the original direction after meeting the light decreases in general as the number of trials of the series increases.

It will be remembered that each series was interrupted irregularly by longer intervals of time, usually about a day or longer. Despite this there is a general constancy of the tendency throughout each series. This seems to indicate ability to retian for some time the modification of response.

These experiments were repeated 18 months after the preceding portion of the paper was completed. Two individuals were used and a series of 18 readings approximately 3 minutes apart were obtained with each. The total number of contacts made by these two individuals in groups of three consecutive trials beginning with the first follow:: $20,9,10,6,7,4$. The results obtained in these observations are consequently in harmony with those obtained in the preceding observations.

## semmary.

When Amatha repeatedly comes in contact with a band of intense light the number of attempts to continue in the original direction decreatees ats the number of trials increases.

This indicates that there is some change in Amotsa that is analogous to what is catled "learning" in the higher amimals.

## I.ITERAT (LRE (ITEI)

```
Gibbs, David and Dellinger, O. P.
    'o8 The 1)aily l.ite of Amethe protecs. . Im. Jour. P'sy.. Vol. 19, P1). 232-2.14.
Mast, S.O.
    'so Reactions in Amucbat (o) light. Jour. Expy. Zool., Vol. 7, [p). 265-277.
Schaeffer, A. A.
    's7 Choice of Food in Amraba. Jour. Ammal Behavior, \ol. 7. Pp. 220-258.
Schaeffer, A. A.
    '17 Reactions of Amocba to l.ight and the Elfect of Light on Feeding. Brol.
        B(Ll., V'ol. 32, pJ).45-72.
```

